Developing a representative community health survey sampling frame using open-source remote satellite imagery in Mozambique

Publication Date:

29 Oct 2018


Wagenaar BH, Augusto O, Ásbjörnsdóttir K, Akullian A, Manaca N, Chale F, et al. (2019). Developing a representative community health survey sampling frame using open-source remote satellite imagery in Mozambique. Int J Health Geogr. 17(37). doi: 10.1186/s12942-018-0158-4



Background: Lack of accurate data on the distribution of sub-national populations in low- and middle-income countries impairs planning, monitoring, and evaluation of interventions. Novel, low-cost methods to develop unbiased survey sampling frames at sub-national, sub-provincial, and even sub-district levels are urgently needed. This article details our experience using remote satellite imagery to develop a provincial-level representative community survey sampling frame to evaluate the efects of a 7-year health system intervention in Sofala Province, Mozambique.

Methods: Mozambique’s most recent census was conducted in 2007, and no data are readily available to generate enumeration areas for representative health survey sampling frames. To remedy this, we partnered with the Humanitarian OpenStreetMap Team to digitize every building in Sofala and Manica provinces (685,189 Sofala; 925,713 Manica) using up-to-date remote satellite imagery, with fnal results deposited in the open-source OpenStreetMap database. We then created a probability proportional to size sampling frame by overlaying a grid of 2.106 km resolution (0.02 decimal degrees) across each province, and calculating the number of buildings within each grid square. Squares containing buildings were used as our primary sampling unit with replacement. Study teams navigated to the geographic center of each selected square using geographic positioning system coordinates, and then conducted a standard “random walk” procedure to select 20 households for each time a given square was selected. Based on sample size calculations, we targeted a minimum of 1500 households in each province. We selected 88 grids within each province to reach 1760 households, anticipating ongoing confict and transport issues could preclude the inclusion of some clusters.

Results: Civil confict issues forced the exclusion of 8 of 31 subdistricts in Sofala and 15 of 39 subdistricts in Manica. Using Android tablets, Open Data Kit software, and a remote RedCap data capture system, our fnal sample included 1549 households in Sofala (4669 adults; 4766 children; 33 missing age) and 1538 households in Manica (4422 adults; 4898 children; 33 missing age).

Conclusions: Other implementation or evaluation teams may consider employing similar methods to track population distributions for health systems planning or the development of representative sampling frames using remote satellite imagery.


Read the Full Article


Stand with HAI

Stand with HAI


When you support Health Alliance International, you take a stand for a more equitable and respectful model of global health. Your donation not only helps us expand our reach, it is an investment in our shared values of health equity and solidarity. 

Join the Alliance

Our alliance is made up of supporters, partners, staff, and volunteers who share our commitment to universal access to quality health care. Just like a health system, every person plays a role in keeping us working toward this ultimate goal. Will you join us? 

Get Engaged

The kind of change we seek requires sustained action.  Whether you want to engage in HAI's advocacy work or help spread HAI's mission and model, we rely on our friends and supporters to stand beside us when we stand up for equity in global health.

Didn't find what you were looking for?

Didn't find what you were looking for?